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20 Department of Physics of Complex Systems, Eötvös Loránd University, Pf. 32, H-1518 Budapest,

Hungary.

21Institute of Astronomy, School of Science, University of Tokyo, Osawa 2-21-1, Mitaka, 181-0015, Japan.

22 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218.

23Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa, Kashiwa City, Chiba 277-8582,

Japan.



– 3 –

24 Microsoft Research, 455 Market Street, Suite 1690, San Francisco, CA 94105.

25 Astronomical Institute of the University of Basel, Department of Physics and Astronomy, Venusstrasse

7, CH-4102 Basel, Switzerland

26 Dept. of Physics & Astronomy, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada

27 Institute for Astronomy and Computational Sciences Physics Department Catholic University of Amer-

ica Washington DC 20064

28 US Naval Observatory, 3540 Massachusetts Avenue NW, Washington, DC 20392.

29 Code 7215, Remote Sensing Division Naval Research Laboratory 4555 Overlook Avenue SW Washington,

DC 20392.

30 Institute for Advanced Study Einstein Drive Princeton, NJ 08540

31 Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM

88003.

32National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan.

33 Astronomical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan

34 School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom

35 Jet Propulsion Laboratory, 4800 Oak Drive, Pasadena, CA 91109

36 California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125

37 ISR-4, MS D448, Los Alamos National Laboratory, P.O.Box 1663, Los Alamos, NM 87545.

38 Max Planck Institut für Astrophysik, Postfach 1, D-85748 Garching, Germany.

39 Subaru Telescope, 650 N. A’ohoku Place, Hilo, HI 96720, USA

40 Obserwatorium Astronomiczne na Suhorze, Akademia Pedogogiczna w Krakowie, ulica Podchora̧żych
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ABSTRACT

This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky

Survey (SDSS). DR5 includes all survey quality data taken through June 2005

and represents the completion of the SDSS-I project (whose successor, SDSS-

II will continue through mid-2008). It includes five-band photometric data for

217 million objects selected over 8000 deg2, and 1,048,960 spectra of galaxies,

quasars, and stars selected from 5713 deg2 of that imaging data. These numbers

represent a roughly 20% increment over those of the Fourth Data Release; all the

data from previous data releases are included in the present release. In addition

to “standard” SDSS observations, DR5 includes repeat scans of the southern

equatorial stripe, imaging scans across M31 and the core of the Perseus cluster

of galaxies, and the first spectroscopic data from SEGUE, a survey to explore

the kinematics and chemical evolution of the Galaxy. The catalog database

incorporates several new features, including photometric redshifts of galaxies,

tables of matched objects in overlap regions of the imaging survey, and tools

that allow precise computations of survey geometry for statistical investigations.

Subject headings: Atlases—Catalogs—Surveys

Submitted to The Astrophysical Journal Supplement Series, October 12, 2006

1. Introduction

The primary goals of the Sloan Digital Sky Survey (SDSS) are: a large-area, well-

calibrated imaging survey of the north Galactic cap, repeat imaging of an equatorial stripe

in the south Galactic cap to allow variability studies and deeper co-added imaging, and

spectroscopic surveys of well-defined samples of roughly 106 galaxies and 105 quasars (York

et al. 2000). The survey uses a dedicated, wide-field, 2.5m telescope (Gunn et al. 2006) at

Apache Point Observatory, New Mexico. Imaging is carried out in drift-scan mode using a

142 mega-pixel camera (Gunn et al. 1998) that gathers data in five broad bands, u g r i z,

spanning the range from 3000 to 10,000 Å (Fukugita et al. 1996), with an effective exposure

time of 54.1 seconds per band. The images are processed using specialized software (Lupton

et al. 2001; Stoughton et al. 2002; Lupton 2005), and are astrometrically (Pier et al. 2003)

73 Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106
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and photometrically (Hogg et al. 2001; Tucker et al. 2006) calibrated using observations of a

set of primary standard stars (Smith et al. 2002) observed on a neighboring 20-inch telescope.

Objects are selected from the imaging data for spectroscopy using a variety of algorithms,

including a complete sample of galaxies with Petrosian (1976) r magnitudes brighter than

17.77 (Strauss et al. 2002), a deeper sample of color- and magnitude-selected luminous red

galaxies (LRGs) from redshift 0.15 to beyond 0.5 (Eisenstein et al. 2001), a color-selected

sample of quasars with 0 < z < 5.5 (Richards et al. 2002), optical counterparts to ROSAT X-

ray sources (Anderson et al. 2003), and a variety of stellar and calibrating objects (Stoughton

et al. 2002; Adelman-McCarthy et al. 2006). These targets are observed by a pair of double

spectrographs fed by 640 optical fibers, each 3′′ in diameter, plugged into aluminum plates

2.98◦ in diameter. The resulting spectra cover the wavelength range 3800 − 9200 Å with a

resolution of λ/∆λ ≈ 2000. The finite size of the fiber cladding means that only one of two

objects closer than 55′′ can be targeted on a given plate; this restriction results in a roughly

10% incompleteness in galaxy spectroscopy, but this incompleteness is well characterized and

is generally straightforward to correct in statistical calculations (e.g., Zehavi et al. 2002).

This paper presents the Fifth Data Release (DR5) of the SDSS, which follows the Early

Data Release of commissioning data (EDR; Stoughton et al. 2002) and the regular data

releases DR1-DR4 (Abazajian et al. 2003, 2004, 2005; Adelman-McCarthy et al. 2006). These

data releases are cumulative, so all observations in the earlier releases are also included in

DR5. There have been no substantive changes to the imaging or spectroscopic software since

DR2, so DR5 includes data identical to DR2-DR4 in the overlapping regions. Finkbeiner et

al. (2004) presented a separate (“Orion”) release of imaging data outside the formal SDSS

footprint, mostly at low Galactic latitudes.

The Fifth Data Release includes all survey quality data that were taken as part of

“SDSS-I,” the phase of the SDSS that ran through June 2005, including a variety of imaging

scans and spectroscopic observations taken outside of the standard survey footprint or with

non-standard spectroscopic target selection. The second “SDSS-II” phase, which includes

a number of new participating institutions and will continue through mid-2008, consists of

three distinct surveys: the Sloan Legacy Survey, the Sloan Supernova Survey, and the Sloan

Extension for Galactic Understanding and Exploration (SEGUE). The Legacy survey is es-

sentially a continuation of SDSS-I, with the goal of completing imaging and spectroscopy over

about 8000 deg2 of the north Galactic cap. The Supernova Survey (J. Frieman et al. 2007, in

preparation) repeatedly scans a 300 square degree area in the south Galactic cap during the

fall months to detect and measure time variable objects, especially Type Ia supernovae (out

to z ≈ 0.4) that can be used to measure the cosmic expansion history. SEGUE includes 3500

deg2 of new imaging, mostly at Galactic latitudes below those of the original SDSS footprint,
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and spectroscopy of about 240,000 selected stellar targets to study the structure, chemical

evolution, and stellar content of the Milky Way. Future SDSS data releases will include data

from all three surveys, and some early data from SEGUE are included in DR5. An initial

release of imaging data and uncalibrated object catalogs from the Autumn 2005 season of the

Supernova Survey is available at http://www.sdss.org/drsn1/DRSN1 data release.html,

but it is not part of DR5.

Section 2 of this paper describes the contents of DR5, and §3 summarizes information

about data quality, including new tests of spectrophotometric accuracy. Section 4 describes

several new features of DR5: photometric redshifts for galaxies, “sector/region” tables for

precisely defining the survey geometry, and tools for matching repeat observations of the

same objects. We conclude in § 5.

2. What is included in DR5

As described by Stoughton et al. (2002), public SDSS data are available both as flat files

(from the Data Archive Server, or DAS) and via a flexible web interface to the SDSS database

(the Catalog Archive Server, or CAS). Information about and entry points to both interfaces

can be found at http://www.sdss.org/dr5. The CAS is a convenient and powerful tool for

selecting objects found in the SDSS based on their location, photometric parameters, and (if

they were observed spectroscopically) spectroscopic parameters. FITS images and spectra

for individual objects and fields are available from the CAS; the DAS should be used for

bulk downloads of large quantities of data. Links to extensive documentation and examples

are available on the above web site.

The principal SDSS imaging data are taken along a series of great-circle stripes that aim

to fill a contiguous area in the north Galactic cap, and along three non-contiguous stripes

in the south Galactic cap. Each filled stripe consists of two interleaved strips because of the

gaps between columns of CCDs in the imaging camera (see Gunn et al. 1998; York et al.

2000). Figure 1 shows the region of sky included in DR5, in imaging (top) and spectroscopy

(bottom). In contrast to DR4, the imaging available in DR5 covers an essentially contiguous

region of the north Galactic cap, with a few small patches totaling ∼ 200 square degrees

remaining (nearly all of this area will be included in DR6). The area covered by the DR5

primary imaging survey (including the southern stripes but not counting these patches) is

8000 deg2. The great circle stripes in the north overlap at the poles of the survey; 21% of

this region of sky is covered more than once. In any region where imaging runs overlap,

one run is declared primary and used for spectroscopic target selection, and other runs are

declared secondary. DR5 includes both the primary and secondary (repeat) observations of
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each area and source (see §4.3).

As spectroscopic observations necessarily lag the imaging, the DR5 spectroscopic area

still has the gap at intermediate declinations that was present in the DR4 imaging coverage.

The area covered by the spectroscopic survey is 5713 deg2. The spectroscopic data include

1,048,960 spectra, arrayed on 1639 plates of 640 fibers each. Thirty-two fibers per plate

are devoted to measurements of sky. Automated spectral classification yields approximately

675,000 galaxies, 90,000 quasars, and 216,000 stars. Nearly 99% of all spectra are of high

enough quality to yield an unambiguous classification and redshift; most of the unidentified

targets are either faint (r > 20) or have featureless spectra (hot stars or blazar-like AGN; see

Collinge et al. 2005). However, in rare cases the assigned redshift is far from the true redshift,

so for an object with unusual properties it is important to examine the spectra and to check

for flags that can indicate data quality or classification problems. As described in the DR4

paper (Adelman-McCarthy et al. 2006), a number of plates have duplicate observations,

usually just one but in some cases several. DR5 includes 62 duplicates of 53 unique main

survey plates, and ten duplicates of special plates which take spectra outside the standard

survey target selection. Some main-survey objects are also reobserved on adjacent plates

to check the end-to-end reproducibility of spectroscopy. In total, about 2% of main-survey

objects have one or more repeat spectra.

In the Fall months, when the southern Galactic cap is visible in the northern hemi-

sphere, the SDSS imaging has been confined to a stripe along the Celestial Equator, plus

two “outrigger” stripes, centered roughly at δ = +15◦ and δ = −10◦, respectively (these are

visible on the right-hand-side of the panels of Figure 1). We have performed multiple imaging

passes of the southern equatorial stripe (a.k.a. Stripe 82, spanning 22h 20m < α < 3h 20m,

−1.25◦ < δ < +1.25, in J2000 coordinates), which can be used for variability studies and

for co-addition to create deeper summed images. Previous data releases have included only

a single epoch of these observations. In DR5, we make available 36 runs on the north-

ern strip of this stripe and 29 runs on the southern strip; these are all the observations

of Stripe 82 carried out before July 2005 that are of survey quality. Each individual run

covers only part of the full right ascension range of the stripe; Figure 2 shows the num-

ber of passes available along the northern and southern strips, as a function of right as-

cension. The central regions of the stripe have typically been covered 10-20 times. The

extra runs are available in DR5 only through the DR supplemental DAS, described at

http://www.sdss.org/dr5/start/aboutdr5sup.html. In future data releases, they will

be made available through the CAS as well. Note that DR5 does not include those runs on

Stripe 82 at larger right ascension, in the region of Orion, as described by Finkbeiner et al.

(2004). Those runs continue to be made available through the websites indicated in that

paper.
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Fig. 1.— The distribution on the sky of SDSS imaging (upper panel) and spectroscopy

(lower panel) included in DR5, shown in J2000 equatorial coordinates. The regions of sky

that are new to DR5 are shaded more lightly. The upper panel includes both those regions

included in the CAS (totaling 8000 deg2) and the supplementary imaging runs available only

through the DAS, which consist of SEGUE scans at low Galactic latitude and scans through

M31 and the Perseus cluster.
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Fig. 2.— Coverage of the southern equatorial stripe in DR5. Solid and dotted lines show the

number of photometric runs covering regions of different right ascension, for the northern

and southern strips, respectively.
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A combined, deep image of the full equatorial stripe is being prepared and will be made

available in a future data release. However, for objects that can be detected in a single

pass, the benefits of co-addition can mostly be realized simply by averaging the photometric

measurements from the multiple passes, using the multiple entries in the photometric catalog

rather than analyzing a summed image. Figure 3, based on the Stripe 82 stellar catalog of

Ivezić et al. (in preparation), demonstrates this improvement, showing the g − r vs. u − g

color-color diagram for blue, non-variable point sources (mostly white dwarfs) in Stripe 82.

Data co-added at the catalog level have been used to search for faint quasars (Jiang et al.

2006), to measure the dispersion in galaxy colors on the red sequence (Cool et al. 2006), and

to improve the signal-to-noise ratio of galaxy u-band Petrosian magnitudes (Baldry et al.

2005). The Stripe 82 data have also been used to search for variable and high proper motion

objects (e.g., Ivezić et al. 2003) and to test the covariance of photometric errors among bands

and among multiple objects in the same fields (Scranton et al. 2005). Because the catalogs

from the multiple Stripe 82 scans are not yet available in the CAS, averaging or variability

searches must be done by downloading object tables from the DAS and identifying repeat

observations of the same object by positional matching.

In addition to the repeat scans on Stripe 82, several imaging runs outside of the standard

footprint are included:

• Two runs that together make a 2.5◦ stripe crossing M31, the Andromeda Galaxy. These

imaging data have been used to search for substructure in M31’s halo (e.g., Zucker et

al. 2004ab).

• Five runs that together cover 78 deg2 centered roughly on the low-redshift Perseus

cluster of galaxies.

• Ten runs of imaging data taken as part of the SEGUE survey, including stripes at l =

50◦ (−46◦ < b < −8◦), l = 110◦ (−36◦ < b < 29.5◦), and l = 130◦ (−49 < b < −18.6),

and a stripe that runs for 20 degrees along δ ≈ 25◦.

As with the repeat scans of Stripe 82, objects detected in these runs are recorded in the DR-

supplemental DAS: http://www.sdss.org/dr5/start/aboutdrsup.html, but they are not,

as yet, available in the CAS. All these runs are in quite crowded fields, as they tend to go to

low Galactic latitude, or pass through the center of M31. The completeness and accuracy of

the photometry produced by the automated SDSS pipeline becomes suspect in crowded fields,

so these data should be used with care. Plots and tables of the field-by-field data quality for

these runs may be accessed at http://das.sdss.org/DRsup/data/imaging/QA/summaryQA analyzePC.html.

Because of the relatively small footprint of the imaging in the southern Galactic cap,
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Fig. 3.— The g − r vs. u − g color-color diagram for the blue, non-variable point sources

with u < 20 in the equatorial stripe (from Ivezić et al., in preparation). The top panel

shows results using single-epoch DR5 photometry, while the bottom panel shows the striking

improvement obtained by averaging the photometric measurements from all of the imaging

passes, allowing clear separation between the sequences of helium white dwarfs (the top side

of the “triangle”) and hydrogen white dwarfs (which lie along the other two sides). This

region of color space also includes white dwarf–M dwarf pairs, hot subdwarfs, and quasars

(see, e.g., the discussion of Eisenstein et al. [2006]). Main sequence and red giant stars (far

more numerous, of course), are mostly off the diagram to the upper right.
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the spectroscopy of targets selected by our normal algorithms was completed quite early in

the survey; most of these data were included already in DR1. We generally restrict imaging

observations to pristine conditions, when the moon is below the horizon, the sky is cloudless,

and the seeing is good. To make optimal use of the remaining time, we undertook a series of

spectroscopic observing programs, based mostly on the imaging data of the equatorial stripe

in the southern Galactic cap, designed to go beyond the science goals of the main survey.

DR5 includes 299 plates from these programs, carried out in the Fall months of 2001–2004,

with a total of 204,160 spectra. The great majority of these plates were already included in

DR4; the target selection for them is described in the DR4 paper (Adelman-McCarthy et

al. 2006), and we will not repeat it here. The science objectives include studies of galactic

kinematics, calibration of photometric redshifts, evaluation of the completeness of the quasar

survey (Vanden Berk et al. 2005), and surveys of galaxies that fall outside of the standard

survey selection criteria (Baldry et al. 2005).

DR5 includes a total of 84 special plates that were not included in DR4. All of these

were obtained as early data of the SEGUE program. Each SEGUE pointing includes two

640-fiber plates of different exposure times, with 592 brighter (13 < g < 18) and 560 fainter

(18 < g < 20) stars targeted. The remaining targets are calibration standards and sky

fibers. Target selection algorithms, which are outlined in Adelman-McCarthy et al. (2006)

and will be described more fully in a future paper, identify candidate stars in the following

categories: white dwarfs (25 per pointing), cool white dwarfs (10), A/BHB stars (150), F

turnoff and sub-dwarf stars (150), G stars (375), K giants (100), low metallicity candidates

(150), K dwarfs (125), M dwarfs (50), and AGB candidates (10). These plates are listed and

described at http://www.sdss.org/dr5/products/spectra/special.html.

Tables 1 and 2 summarize the characteristics of the DR5 imaging and spectroscopic sur-

veys, respectively. Note that the “star” and “galaxy” divisions in Table 1 refer to the photo-

metric pipeline classifications; “stars” include quasars and any other unresolved sources, and

“galaxies” are all resolved objects, including airplane and satellite trails, etc. Classifications

in Table 2 are those returned by the spectroscopic pipeline; note, in particular, that the

“quasar” classification (based on the presence of a securely detected, high excitation emis-

sion line with FWHM broader than 1000 km sec−1) does not include any explicit luminosity

cut.

DR5 contains several QSO-related tables and views. The QuasarCatalog table lists

the individually inspected, luminosity and line-width restricted, bonafide quasars from the

DR3 sample as published by Schneider et al. (2005). A similar catalog is now being created

for DR5 (Schneider et al. 2007, in prep.) The QSOBunch table contains a record for each

“object” flagged as a potential QSO in any of three catalog tables: Target.PhotoObjAll,
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Best.PhotoObjAll or SpecObj. In such cases a bunch record describing the primary photo,

target, and spectro objects within 1.5 arcseconds of that object is created. Identifiers

of nearby objects from each catalog are combined into QSOConcordanceAll records that

point to the QSOBunch record. Those identifiers in turn point to the QSObest, QSOtarget,

and QSOspec tables that carry more detailed information about each object. Thus, the

QuasarCatalog table provides straightforward access to a set of carefully vetted quasars with

well defined selection criteria, while the QSOConcordanceAll table can be used to identify

all objects that were flagged as potential quasars based on photometry and/or spectroscopy.

3. Data Quality

SDSS imaging data are obtained under photometric conditions, as determined by obser-

vations from the 0.5-m photometric monitoring telescope and a 10µm “cloud camera” (Hogg

et al. 2001; Tucker et al. 2006). The median seeing of the imaging data is 1.4′′ in the r band,

and essentially all imaging data accepted as survey quality have seeing better than 2′′ (see

Figure 4). The 95% completeness limit for detection of point sources in the r band is 22.2

mag, estimated from comparison to deeper surveys (COMBO-17 and CNOC-2). Constancy

of stellar population colors shows that photometric calibration over the survey area is accu-

rate to roughly 0.02 mag in the g, r and i bands, and 0.03 mag in u and z (Ivezić et al. 2004).

Analysis of multiple observations of the southern Equatorial stripe shows that photometry

of bright stars is repeatable at better than 0.01 mag in all bands and that the photometric

pipeline correctly estimates random photometric errors (Z. Ivezić et al., in preparation). All

magnitudes are roughly on an AB system (Oke & Gunn 1983) and use the “asinh” scale

described by Lupton, Gunn, & Szalay (1999). The astrometric calibration precision is better

than 0.1′′ rms per coordinate (Pier et al. 2003).

The wavelength calibration uncertainty for SDSS spectra is roughly 0.05 Å. Note that

spectra in DR5 (and DR2-DR4) are not corrected for Galactic extinction; this is a change

relative to DR1. The spectra are flux-calibrated using observations of F subdwarfs, which are

targeted for this purpose on each spectroscopic plate; the calibration procedure is described

in §4.1 of Abazajian et al. (2004). Wilhite et al. (2005) discuss the repeatability of stellar

spectra taken more than 50 days apart. Their Figure 4 shows that the distribution of the

fractional difference from one observation to another in the flux summed over all pixels in

non-variable stars has a 68% full-width of ∼ 5−8%, depending on signal-to-noise ratio. Their

Figure 5 shows that the typical offset in the calibration between two epochs of a single plate

is 1−3% over the full observed wavelength range, with no strong features at any wavelength.

A useful way to test the quality of spectrophotometry on small scales (< 500Å) is to
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Table 1. Characteristics of the DR5 Imaging Survey

Footprint area 8000 deg2 (20% increment over DR4)

Imaging catalog 217 million unique objects

AB Magnitude limits:a

u 22.0 mag

g 22.2 mag

r 22.2 mag

i 21.3 mag

z 20.5 mag

Median PSF width 1.4′′ in r

RMS photometric calibration errors:

r 2%

u − g 3%

g − r 2%

r − i 2%

i − z 3%

Astrometry errors < 0.1′′ rms absolute per coordinate

Object Counts:b

Stars, primary 85,383,971

Stars, secondary 28,201,858

Galaxies, primary 131,721,365

Galaxies, secondary 33,044,047

a95% completeness for point sources in typical seeing; 50% completeness numbers are

generally 0.4 mag fainter. The difference between “asinh” magnitudes and conventional

magnitudes is 0.004 − 0.015 at the 95% limits and 0.008 − 0.03 at the 50% limits, smaller

than the uncertainty in conversion of magnitudes between surveys used to estimate the

completeness.

bPrimary imaging objects are those in the primary imaging area; secondary objects are in

repeat imaging, so they are typically repeats of primary objects.
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Table 2. Characteristics of the DR5 Spectroscopic Survey

Main Survey

Footprint area 5713 deg2 (19% increment over DR4)

Wavelength coverage 3800–9200Å

Resolution λ/∆λ 1800–2100

Signal-to-noise ratioa > 4 per pixel at g = 20.2

Wavelength calibration errors < 5 km sec−1

Redshift accuracy 30 km sec−1 rms for Main galaxies

∼ 99% of classifications and redshifts are reliable

Number of plates 1639

Number of spectrab 1,048,960

Galaxies 674,741

Science primary galaxies 561,530

Quasars 90,596

Science primary quasars 75,005

Stars 215,781

Sky 55,555

Unclassifiable 12,287

Additional Spectroscopy

Repeat of main survey plates 62 plates

SEGUE and SEGUE test plates 80 plates (2 repeated)

Other southern programs 219 plates (8 repeated)

aPixel size is 69 km s−1, varying from 0.9Å (blue end) to 2.1Å (red end).

bScience primary objects define the set of unique science spectra of objects from main-

survey plates (i.e., they exclude repeat observations, sky fibers, spectrophotometric stan-

dards, and objects from special plates).
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observe a population of identical objects at a range of redshifts. Spectrophotometric residuals

may then be computed by dividing the restframe spectra of objects in different redshift bins.

While no ideal population of identical objects exists, elliptical galaxies have spectra that are

similar, on average, over the redshift range z = 0.04− 0.20, since they are no longer forming

stars.

We select ellipticals for this test using their position in the color-magnitude diagram,

with an additional cut on the Hα equivalent width of 2Å to exclude any objects with on-

going star formation. We average 300 to 1000 spectra in the restframe in 160 bins of 0.001 in

redshift from z = 0.04−0.20. To determine the spectrophotometry residuals we must fit out

any evolution with redshift, which can arise from a combination of true passive evolution,

slight changes in sample selection, and aperture effects. This is done by fitting a fourth-order

polynomial to flux as function of redshift for each rest-frame wavelength. We divide the rest-

frame spectra by these fits and interpolate back to the observed frame. The median of the

residual spectra in the observed frame provides a measure of the spectrophotometry error, i.e.,

the mean factor by which the flux-calibrated spectrum provided by the spectroscopic pipeline

is high or low compared to a perfectly calibrated spectrum. Since the evolutionary fits are

themselves affected by the spectrophotometry errors, we apply the estimated correction to

the averaged spectra and iterate the process, which converges rapidly.

Figure 5 shows the spectrophotometry residuals inferred from each of the 160 composite

spectra, and the median of these residuals. There are sharp features associated with calcium

and sodium absorption, probably originating in the Galactic interstellar medium, and with

night sky emission lines. The most worrisome features are the wiggles below 4500 Å, with

amplitude of ∼ 3%, centered on Ca H and K, Hδ, and Hγ. The coincidence of these wig-

gles with known spectral features suggests that these residuals are caused by a systematic

mismatch between the spectrophotometric standard stars and the model F-stars used in the

calibration pipeline.

One obvious question is the scale at which we can measure spectrophotometry errors

with this technique. This scale is set by our ability to discriminate evolution effects from

the spectrophotometry residuals, which in turn is related to the wavelength shift between

our high- and low-redshift bins. We have tested the technique empirically by adding sine

and cosine modulations with different periods to the observed frame and the seeing how

well we recover them. Residuals seem to be well measured on scales less than 500Å, i.e.,

Figure 5 should reveal any systematic errors in SDSS photometry with periods shorter than

this. On larger scales, we must rely on the F star spectral models, on tests against white

dwarf model spectra (see figure 4 of Abazajian et al. 2004), and on checks of synthesized

magnitudes against the photometry. Collectively, these tests imply that the flux-calibrated
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SDSS spectra can be used for spectrophotometry at the few percent level.

4. New Features of DR5

4.1. Photometric Redshifts for Galaxies

DR5 includes two estimates of photometric redshifts for galaxies, calculated with two

independent techniques.1 The first uses the template fitting algorithm described by Csabai

et al. (2003), which compares the expected colors of a galaxy (derived from template spectral

energy distributions) with those observed for an individual galaxy. A common approach for

template fitting is to take a small number of spectral templates T (e.g., E, Sbc, Scd, and

Irr galaxies) and choose the best fit by optimizing the likelihood of the fit as a function of

redshift, type, and luminosity, p(z, T, L). We use a variant of this method that incorporates

a continuous distribution of spectral templates, enabling the error function in redshift and

type to be well defined. Since a representative set of photometrically calibrated spectra in the

full wavelength range of the filters is not easy to obtain, we have started from the empirical

templates of Coleman, Wu, & Weedman (1980), extended them with spectral synthesis

models, and adjusted them to fit the colors of galaxies in the training set (Budavari et al.

2000). The results are listed in the CAS table Photoz, which includes the estimate of the

redshift, spectral type, rest-frame colors, rest-frame absolute magnitudes, errors on all of

these quantities, and a quality flag. All photometric objects have an entry in the PhotoZ

table, regardless of whether they are photometrically classified as galaxies or stars, so it is

essential to consult the quality flag and error characterizations when using the photometric

redshifts.

The second photometric redshift estimate uses a neural network method that is very

similar in implementation to that of Collister & Lahav (2004). The training set consists of

140,000 single pass SDSS photometry measurements with spectroscopic redshifts from var-

ious sources: the SDSS (110,000 redshifts), CNOC2 (Yee et al. 2000; 9000 redshifts) CFRS

(Lilly et al. 1995; 1000 redshifts), DEEP and DEEP2 (Weiner et al. 2005; 1700 redshifts),

TKRS/GOODS (Wirth et al. 2004; 300 redshifts), and the 2SLAQ LRG survey (Cannon

et al. 2006; 27,000 redshifts). The SDSS portion of the training set consists of a repre-

sentative sampling of the SDSS Main, LRG, and southern survey spectroscopic data; the

other surveys are used to augment the training set at magnitudes fainter than probed by

the SDSS spectroscopic samples. Note that the training set multiply counts independent,

1See http://skyserver.elte.hu/PhotoZ/ and http://yummy.uchicago.edu/SDSS/ for details.
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Fig. 4.— The distribution of image quality (FWHM of point sources) in the imaging survey,

measured in r band.

Fig. 5.— Test of spectrophotometric accuracy, performed by dividing the rest-frame spectra

of elliptical galaxies observed over the redshift range 0.04 ≤ z ≤ 0.2 (see text). Points show

the residual inferred from 160 redshift-bin spectra (each an average of 300-1000 individual

galaxies) spaced by ∆z = 0.01, and the central line shows the median residual.
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repeat SDSS photometric measurements of the same objects, in particular on SDSS Stripe

82. Photometric redshift errors are computed using the Nearest Neighbor Error method

(NNE), which assigns to each object an error based on the photometric redshift error dis-

tribution of objects with similar magnitude and color in the training set (for which the true

redshifts are known), and this approach is found to accurately predict the errors (H. Oyaizu

et al., in preparation). The trained network is tested on a larger validation set consisting

of 1,700,000 objects with SDSS photometry (counting independent repeat measurements)

and for which spectroscopic redshifts are available. The input catalogs for these photometric

redshift measurements were derived from the SDSS photo pipeline outputs, but with a few

additional cuts employed to improve the star-galaxy separation, using the PSF probability

and the lensing smear polarizability (Sheldon et al. 2004). The photometric sample was cut

at a galaxy probability greater than 0.8, which is very stringent, and a smear polarizability

less than 0.8, and further cuts on magnitude were also made; hence not all DR5 objects are

included. The Photoz2 table lists a photometric redshift, an error, and a quality flag. For

objects with all five SDSS magnitudes measured, the flag is set to 0 if r ≤ 20 or 2 if r > 20;

photometric redshifts for flag = 2 objects are subject to larger uncertainties. Objects not

satisfying the above conditions have flag set to 1 or 3 and their photometric redshifts should

not be used. There are 12.6 million objects in the DR5 data set with a Photoz2 flag of 0

and another 59.0 million with a flag of 2. In the validation set, 68% of flag = 0 galaxies

have photometric redshift within 0.026 of the measured spectroscopic redshift (in the range

0.001 ≤ z ≤ 1.5). The rms dispersion between photometric and spectroscopic redshifts is

higher, σ = 0.039, a consequence of the non-Gaussian tails of the error distribution.

Figure 6 plots the two photometric redshift estimates against spectroscopic redshifts,

and against each other, for 20,000 objects selected from the DR5 database. These are

objects with SDSS spectroscopic redshifts, spectroscopically classified as galaxies, PhotoZ

quality flag of 4 or 5, and PhotoZ2 flag of 0 or 2. Both estimates show a tight correlation

with spectroscopic redshift for the great majority of sources, while PhotoZ shows a somewhat

larger fraction of outliers with overestimated photometric redshifts.

4.2. Regions and Sectors

Each survey observation, imaging or spectroscopic, covers a certain region of the sky.

Doing statistical calculations with the SDSS data usually requires performing computations

over these regions and the intersections among them, e.g., to normalize luminosity functions

or calculate completeness corrections. Typical questions are: how much area do these regions

cover, how much do they overlap, and which regions contain a certain point or area of the
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Fig. 6.— Comparison of photometric redshift estimates PhotoZ and PhotoZ2 to SDSS spec-

troscopic redshifts, and to each other.
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sky? The DR5 CAS includes tables that precisely describe each region and built-in tools for

finding the connections and overlaps between one kind of region and another. Each Region

in the CAS is represented as a union of spherical polygons, and its area is analytically

calculated and stored.

The SDSS has many different types of regions; they include the stripes, camera columns,

segments, chunks, and spectroscopic tiles that are the basis of the SDSS observing and target

selection strategy. The survey stripes overlap at the edges, with the overlap increasing

towards the survey poles, so they are clipped into disjoint “staves” centered on each stripe

that uniquely cover the survey area (like the staves of a barrel). The union of the staves

within the survey boundaries defines the survey’s “primary” photometric area. There are

“holes” inside the stripes and staves, consisting of fields that were declared to be of inferior

quality (e.g., because of degraded seeing or contamination by the saturated pixels of a bright

star and its wings). The portions of these holes that lie within the primary survey area are

called TiHoles to emphasize their role in the tiling process, as explained below.

As a simple example of the region tables, let us calculate the photometric survey area.

Imaging data are imported to the database in “chunks,” and the total area of these chunks

can be obtained from the SQL (Structured Query Language) query2

select sum(area) from Region where type=‘CHUNK’,

yielding 9560 deg2. However, this counts overlapping areas more than once. To obtain the

unique survey imaging footprint, we select only the “primary” region, the intersection of the

chunks with the staves,

select sum(area) from Region where type=‘PRIMARY’,

yielding 7897 deg2. The total area and unique footprint area should be adjusted downwards

by the area of the holes, obtained from the queries

select sum(area) from Region where type=‘HOLE’

for the chunks and

select sum(area) from Region where type=‘TIHOLE’

for the primary area. These queries yield 26 and 23 square degrees, respectively, making the

2See http://cas.sdss.org/dr5/en/help/docs/sql help.asp. The text follows our standard capital-

ization conventions; for example, the various types of entries in the Region table (CHUNK, TILE, etc.) are

listed in all capital letters. However, queries are not case-sensitive.
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final precise numbers for the photometric survey area 9534 deg2 in total and 7875 unique

deg2 within the main survey boundaries. (The 8000 deg2 figure quoted elsewhere includes a

small amount of imaging outside of the ellipse that defines the main survey boundary.)

For analyses of spectroscopic samples, the issues are more complex. The SDSS spectro-

scopic survey aims to sample quasars and galaxies uniformly over the sky, with additional

spectra for other samples (not necessarily uniform) of science targets, calibration objects,

and sky. In practice, after an area has been observed by the photometric survey, a series

of targeting pipelines creates lists of targets that satisfy the selection criteria. A “tiling”

program (Blanton et al. 2003) runs over a subset of the observed area and assigns targets

to circular “tiles” of diameter 2.98◦; it also determines which targets are assigned fiber holes

on which spectroscopic plugplate, imposing physical constraints such as the 55′′ minimum

spacing between fibers. A given run of the tiling program operates on the union of a set of

“rectangular” (in spherical coordinates) TilingGeometry areas.

For calculations of galaxy or quasar clustering, one needs to compute the completeness

of the spectroscopic sample as a function of sky position. The natural scale on which to do

this is that of a SECTOR, a region that is covered by a unique set of Tile overlaps (e.g., by

a particular spectroscopic plate, or by two or more plates that overlap). These are regions

over which the completeness should be nearly uniform (see, e.g., Figure 1 of Percival et

al. [2007] and earlier discussions by Tegmark et al. [2004] and Blanton et al. [2005]). The

Target table lists (in the column target.regionID) the SECTOR for every object selected

by the spectroscopic target selection algorithms, regardless of whether or not that object

has been spectroscopically observed. To find the SECTOR for an object in the main table of

spectroscopically observed objects, SpecObj, one must first identify the corresponding entry

in the Target table. For example, the following query

select top 10 s.specObjID, t.regionID

from SpecObj s join Target t

on s.targetID = t.targetID

returns the spectroscopic ID numbers and the SECTOR numbers of the first ten objects en-

countered in the SpecObj table. The database function fRegionsContainingPointEQ can

be used to find the SECTOR that covers a specified point on the sky.

The following practical example illustrates several other features of these tables. The

SDSS quasar target selection algorithm underwent significant changes in the early phases of

the survey, reaching its final form (Richards et al. 2002) with targetVersion 3.1.0, following

DR1. A calculation of the quasar luminosity function should therefore be restricted to
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regions targeted with this or subsequent versions of the target selection code, and it should

be normalized using the corresponding area, which the following query shows to be 4013

deg2:

select sum(area)

from Region

where regionID in (

select b.boxID

from Region2Box b join TilingGeometry g

on b.id = g.tilingGeometryID

where b.boxType = ‘SECTOR’

and b.regionType = ‘TIPRIMARY’

group by b.boxID

having min(g.targetVersion) >= ’v3 1 0’

)

This query uses the Region2Box table, which maps between various types of Regions and

the TilingGeometries in which information about the target selection is stored. The where

clause selects, from the table of all Regions, those which are SECTORs in the primary tiled

area and were targeted with a final version of the quasar target selection algorithm.3

In principle, these tables provide all the information needed for complex clustering cal-

culations — e.g., determining local completeness corrections, generating appropriate catalogs

of randomly distributed points, and identifying targeted objects that were not observed be-

cause of the minimum fiber spacing constraint. The queries required for such calculations

are rather lengthy, and will be presented and documented elsewhere.

4.3. Match Tables

About 50 million photometric objects in the CAS lie in regions that have been observed

more than once, because of stripe overlap or repeat scans. These repeat observations can

be used to detect variable and moving objects. The MatchHead and Match tables of the

DR5 CAS provide convenient tools to examine the multiple observations of a single object,

3This query is included as one of the sample queries in the DR5 documentation, under “Uniform Quasar

Sample,” together with a longer query that shows how to extract all quasars and quasar candidates from

the corresponding sky area.
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identified by positional matches with a 1′′ tolerance, and collectively referred to as a bun-

dle. The MatchHead table has the unique ID of the first object in the bundle (defined by

observation date), the mean and variance of the coordinates of all matched detections, the

number of matched detections, and the number of times the object was “missed” in other

observations of the same sky area. Misses can occur because the object is variable, because

it is moving, because inferior seeing moves it below the detection threshold, or because the

original detection was spurious. The Match table lists all objects in each bundle.

As an example, the following query lists information about the multiple detections of

an object at (ra,dec)=(194,0):

select MH.*

from MatchHead MH

join fGetNearbyObjEq(194,0,0.3) N on MH.objID = N.objID

The fGetNearbyObjEq function returns a table (assigned the name N) of all objects found

within 0.3 arc-minutes of the desired coordinates. The select command returns all entries

in the matchHead table (assigned the name MH) which, as a result of the join command,

have an object ID that matches one returned by the neighborhood search. In this case, there

is just one such match, hence a single bundle. One can get information on all the objects in

the bundle with the query

select M.*

from Match M

join MatchHead MH on M.matchHead = MH.objID

join fGetNearbyObjEq(194,0,0.3) N on MH.objID = N.objID

where the new join command selects out those Match tables whose matchHead agrees with

that returned by the earlier query.

The DR5 CAS has 50,627,023 bundles described by MatchHead and 109,441,410 objects

in the Match table. When an object is undetected in a repeat observation of the same area

of sky, a surrogate object is placed in the Match table but marked as a “miss,” with an

additional flag to indicate if the miss could be caused by masking of the region in the second

observation (e.g., because of a satellite trail or cosmic ray hit) or because it lies near the edge

of the overlap region. A bundle may therefore consist of a single detection and one or more

surrogates (and the object in the MatchHead may be a surrogate). There are 9.8 million

surrogates in the Match table. The presence of surrogate objects may simplify algorithmic
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searches for moving or variable objects.

Because the multiple imaging scans of the southern equatorial stripe are not yet in the

CAS, the Match tables cannot be used to search for moving or variable objects in these data.

However, this capability will be present in future data releases.

5. Conclusions

The Fifth Data Release of the Sloan Digital Sky Survey provides access to 8000 deg2 of

five-band imaging data and over one million spectra. These data represent a roughly 20%

increment over the previous data release (DR4, Adelman-McCarthy et al. 2006). Both the

catalog data and the source imaging data are available via the Internet. All the data products

have been consistently processed by the same set of pipelines across several data releases.

The previous data releases remain online and unchanged to support ongoing science studies.

DR5 includes several qualitatively new features: multiple imaging scans of the southern

equatorial stripe, special imaging scans of M31 and the Perseus cluster, database access to

QSO catalogs and galaxy photometric redshifts, and database tools for precisely defining

the survey geometry and for linking repeat imaging observations of matched objects. More

than a thousand scientific publications have been based on the SDSS data to date, spanning

an enormous range of subjects. Future data releases will increase the survey area, and they

will provide qualitatively new kinds of data on the stellar kinematics and populations of the

Milky Way and on Type Ia supernovae and other transient or variable phenomena, further

extending this scientific impact.

We dedicate this paper to our colleague Jim Gray, who disappeared in January, 2007,

while sailing near San Francisco. Jim dedicated an enormous amount of his time, his energy,

and his remarkable talents to the SDSS over the course of many years. He played a critical

role in the development of the SDSS database, including important contributions to the

writing of this paper.
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